Finite Embedding Theorems for Partial Latin Squares, Quasi-groups, and Loops

نویسنده

  • Charles C. Lindner
چکیده

In this paper we prove that a finite partial commutative (idempotent commutative) Latin square can be embedded in a finite commutative (idempotent commutative) Latin square. These results are then used to show that the loop varieties defined by any non-empty subset of the identities {x(xy) = y, (yx)x = y} and the quasi-group varieties defined by any non-empty subset of {x” = x, x(xy) = y, (yx)x = y}, except possibly {x(xy) = y, (yx)x = y}, have the strong finite embeddability property. It is then shown that the finitely presented algebras in these varities are residually finite, Hopfian, and have a solvable word problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-embeddings and intersections of latin squares of different orders

We consider a common generalization of the embedding and intersection problems for latin squares. Specifically, we extend the definition of embedding to squares whose sides do not meet the necessary condition for embedding and extend the intersection problem to squares of different orders. Results are given for arbitrary latin squares, and those which are idempotent and idempotent symmetric. Th...

متن کامل

Small Latin Squares, Quasigroups and Loops

We present the numbers of isotopy classes and main classes of Latin squares, and the numbers of isomorphism classes of quasigroups and loops, up to order 10. The best previous results were for Latin squares of order 8 (Kolesova, Lam and Thiel, 1990), quasigroups of order 6 (Bower, 2000) and loops of order 7 (Brant and Mullen, 1985). The loops of order 8 have been independently found by “QSCGZ” ...

متن کامل

The Open University ’ s repository of research publications and other research outputs Small Partial Latin Squares that Cannot be

We answer a question posed by Dénes and Keedwell that is equivalent to the following. For each order n what is the smallest size of a partial latin square that cannot be embedded into the Cayley table of any group of order n? We also solve some variants of this question and in each case classify the smallest examples that cannot be embedded. We close with a question about embedding of diagonal ...

متن کامل

New negative Latin square type partial difference sets in nonelementary abelian 2-groups and 3-groups

A partial difference set having parameters (n2, r(n− 1), n+ r2 − 3r, r2 − r) is called a Latin square type partial difference set, while a partial difference set having parameters (n2, r(n+1),−n+r2+3r, r2+r) is called a negative Latin square type partial difference set. Nearly all known constructions of negative Latin square partial difference sets are in elementary abelian groups. In this pape...

متن کامل

All groups of odd order have starter-translate 2-sequencings

Bailey defined 2-sequencings (terraces) of groups. She conjectured that all finite groups except elementary Abelian 2-groups (other than the cyclic group Z2) have 2-sequencings and proved that the direct product of a 2-sequenceable group and a cyclic group of odd order is 2-sequenceable. It is shown here that all groups of odd order have a special type of 2-sequencing called a starter-translate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 13  شماره 

صفحات  -

تاریخ انتشار 1972